[1] 李庆娜, 《凸分析讲义——凸集的表示及相关性质》, 科学出版社, 2023.
[2] Q. N. Li, Modern Optimization Methods, EDP Press, Paris, 2023.
[3] 李庆娜, 《凸分析讲义——共轭函数及其相关函数》, 科学出版社, 2020.
[4] 李庆娜, 李萌萌,于盼盼, 《凸分析讲义》, 科学出版社, 2019.
[5] 李庆娜, 《多维标度方法》,科学出版社, 2019.
[6] 李学文,闫桂峰,李庆娜, 《最优化方法》, 北京理工大学出版社, 2018.
[7] W. S. Teng and Q. N. Li, An efficient quadratic penalty method for a class of graph clustering problems. Optimization and Engineering, 2025. https://doi.org/10.1007/ s11081-025-10042-9
[8] W. S. Teng and Q. N. Li, A matrix optimization method for blind extraction of external equitable partitions from low pass graph signals. Journal of Computational Mathematics, 2025. https://global-sci.org/index.php/JCM/article/view/22899
[9] Y. G. Ye and Q. N. Li, Modified block Newton algorithm for
sub-regularized optimization. Optimization, 2025. https://doi.org/10.1080/02331934.2025.2574469
[10] Z. W. Wang, X. W. Liu and Q. N. Li, A Euclidean distance matrix model for convex clustering, Journal of Optimization Theory and Applicatons, 2025, https://doi.org/ 10.1007/s10957-025-02616-5
[11] Y. X. Wang and Q. N. Li, A fast smoothing Newton method for bilevel hyperparameter optimization for SVC with Logistic loss, Optimization, 2024, 74(12): 2793–2822.
[12] H. Shi and Q. N. Li, A Facial Reduction Approach to the Single Source Localization Problem. Journal of Global Optimization, 2023, 87(2): 831-855.
[13] S. T. Lu and Q. N. Li, A majorization penalty method to SVM with sparse constraint. Optimization Method and Software, 2023, 38(3): 474-494.
[14] P. F. Zhao, Q. N. Li, W. K. Chen and Y. F. Liu, An efficient quadratic programming relaxation-based algorithm for large-scale MIMO detection. SIAM Journal on Optimization, 2021, 31(2): 1519-1545.
[15] Q. N. Li, Z. Li and A. B. Zemkoho, Bilevel hyperparameter optimization for support vector classification: theoretical analysis and a solution method. Mathematical Methods of Operations Research, 2022, 96(3): 315-350.
[16] Y. Q. Yan and Q. N. Li, An efficient augmented Lagrangian method for support vector machine. Optimization Methods and Software, 2020, 35: 855-883.
[17] J. Yin and Q. N. Li, A semismooth Newton method for support vector classification and regression. Computational Optimization and Applications, 2019, 73(2): 477-508.
[18] C. F. Cui, Q. N. Li, L. Q. Qi and H. Yan, A quadratic penalty method for hypergraph matching. Journal of Global Optimization, 2018, 70(1): 237-259.
[19] Q. N. Li and D. H. Li, A class of derivative-free methods for large-scale nonlinear monotone equations. IMA Journal on Numerical Analysis, 2011, 31(4): 1625-1635.
[20] Q. N. Li and H. D. Qi, A sequential semismooth Newton method for the nearest low-rank correlation matrix problem. SIAM Journal on Optimization, 2011, 21(4): 1641-1666.
[21] Q. N. Li, D. H. Li. and H. D. Qi, Newton's method for computing the nearest correlation matrix with a simple upper bound. Journal on Optimization Theory and Applications, 2010, 147(3): 546-568.