The hamiltonian index of a 2-connected graph

Liming Xionga,b,*, Qiuxin Wuc

a Department of Mathematics, Beijing Institute of Technology, Beijing 100081, PR China
b Department of Mathematics, Jiangxi Normal University, Nanchang, 330027, PR China
c College of Science, Beijing Institute of Machinery, Beijing 100085, PR China

Received 9 May 2006; received in revised form 23 October 2007; accepted 4 December 2007
Available online 1 February 2008

Abstract

Let G be a graph. Then the hamiltonian index $h(G)$ of G is the smallest number of iterations of line graph operator that yield a hamiltonian graph. In this paper we show that $h(G) \leq \max\{1, \frac{|V(G)| - \Delta(G)}{3}\}$ for every 2-connected simple graph G that is not isomorphic to the graph obtained from a dipole with three parallel edges by replacing every edge by a path of length $l \geq 3$. We also show that $\max\{h(G), h(G)\} \leq \frac{|V(G)| - 3}{6}$ for any two 2-connected nonhamiltonian graphs G and G' with at least 74 vertices. The upper bounds are all sharp.

Keywords: Hamiltonian index; Maximum degree; Complement graph; Connectivity

1. Introduction

We use [1] for terminology and notation not defined here and consider only simple finite graphs. Throughout the paper we use $\delta(G)$ and $\Delta(G)$ to denote the minimum and maximum degree of a graph G, respectively.

The line graph of $G = (V(G), E(G))$ has $E(G)$ as its vertex set, and two vertices are adjacent in $L(G)$ if and only if the corresponding edges share a common endvertex in G. The m-iterated line graph $L^m(G)$ is defined recursively by $L^0(G) = G$, $L^1(G) = L(G)$ and $L^m(G) = L(L^{m-1}(G))$. The hamiltonian index of a graph G, denoted by $h(G)$, is the smallest integer m such that $L^m(G)$ contains a hamiltonian cycle.

Chartrand [3] showed that the hamiltonian index of G always exists for a connected graph G that is not a path. There have already appeared many results on $h(G)$ in the literature (see [2,4,7–9,11,13,14]). A formula for determining $h(G)$ given in [12] shows that we only need to consider blocks and nontrivial paths whose edges are cut-edges when we want to determine the hamiltonian index of a graph. Note that every block is 2-connected. This motivates us to consider the hamiltonian index of 2-connected graphs.

Saražin gave an upper bound on $h(G)$ as follows.

\textbf{Theorem 1} (Saražin [8]). Let G be a connected simple graph on n vertices that is not a path. Then $h(G) \leq n - \Delta(G)$.

* Corresponding author at: Department of Mathematics, Beijing Institute of Technology, Beijing 100081, PR China.
E-mail addresses: lmxiong@bit.edu.cn (L. Xiong), qxwu@263.net (Q. Wu).

0012-365X/S - see front matter © 2008 Elsevier B.V. All rights reserved.
For 2-connected simple graphs, we improve Theorem 1 as follows.

Theorem 2. Let G be a 2-connected simple graph of order n. If $\Delta(G) \leq n - 3$, then

$$h(G) \leq \frac{n - \Delta(G)}{3}$$

unless G is isomorphic to the graph G_1 obtained from a dipole with three parallel edges by replacing every edge by a path of length $l = \frac{|V(G)|+1}{3} \geq 3$.

Xiong gave a relation of the hamiltonian index of a graph G and its complement graph \overline{G}.

Theorem 3 (Xiong [11]). Let G and its complement \overline{G} be connected graphs of order $n \geq 61$ that are not paths. Then either $L(G)$ or $L(\overline{G})$ is hamiltonian, and if neither G nor \overline{G} is hamiltonian, then

$$\max\{h(G), h(\overline{G})\} \leq \frac{n-1}{2}$$

and the above equality holds if and only if either G or \overline{G} is isomorphic to the graph of order $n = 2t - 1$ obtained by identifying one endvertex of a path of length $t - 1$ with exactly one vertex of a complete graph of order t.

In this paper we consider the same problem for 2-connected graphs. We improve the above theorem as follows.

Theorem 4. Let G and \overline{G} be 2-connected simple graphs of order $n \geq 74$. If neither G nor \overline{G} is hamiltonian, then

$$\max\{h(G), h(\overline{G})\} \leq \frac{n-3}{6}.$$

In Section 2, we will give some auxiliary results which are applied in Sections 3 and 4 to prove our main results. The sharpness of Theorems 2 and 4 is presented in the last section.

2. Preliminaries

Let G be a graph. A subgraph of G is called eulerian if it is connected and every vertex has even degree. For any two subgraphs H_1 and H_2 of G, define the distance $d_G(H_1, H_2)$ between H_1 and H_2 to be the minimum of the distances $d_G(v_1, v_2)$ over all pairs with $v_1 \in V(H_1)$ and $v_2 \in V(H_2)$. If $d_G(e, H) = 0$ for an edge e of G then we say that H dominates e. A subgraph H of G is called dominating if it dominates all edges of G. There is a characterization of graphs G with $h(G) \leq 1$ which involves the existence of a dominating eulerian subgraph in G.

Theorem 5 (Harary and Nash-Williams [6]). Let G be a graph with at least three edges. Then $h(G) \leq 1$ if and only if G has a dominating eulerian subgraph.

A graph is called trivial if it has only one vertex and is called even if every vertex has even degree. For a nonnegative integer k, we define $V_k(G)$ by $V_k(G) = \{x \in V(G) : d_G(x) = k\}$, where $d_G(x)$ is the degree of x in G. A branch in G is a nontrivial path with endvertices that do not lie in $V_2(G)$ and with inner vertices of degree two (if existing). We denote by $B(G)$ the set of branches of G and by $B_1(G)$ the subset of $B(G)$ in which at least one endvertex has degree one. For any subgraph H of G, denote by $B_H(G)$ the set of branches of G whose edges are all in H. For $S \subseteq V(G)$, we denote by $G[S]$ the subgraph of G induced by S. In this paper, we also consider the subgraph induced by a set of edges. For $F \subseteq E(G)$, the subgraph H defined by $V(H) = V(F)$ and $E(H) = E(G) - F$ is said to be the subgraph induced by F, and is denoted by $G[F]$. When we simply say an “induced subgraph”, it means the subgraph induced by a set of vertices.

The following theorem can be considered as an analogue of Theorem 5 for the k-iterated line graph $L^k(G)$ of a graph G.

Theorem 6 (Xiong and Liu [12]). Let G be a connected graph that is not a path and let $k \geq 2$ be an integer. Then $h(G) \leq k$ if and only if $EU_k(G) \neq \emptyset$ where $EU_k(G)$ denotes the set of those subgraphs H of G which satisfy the following five conditions:

(I) H is an even graph;

(II) $V_0(H) \subseteq \bigcup_{i=3}^{\Delta(G)} V_i(G) \subseteq V(H)$;

(III) $d_G(H_1, H - H_1) \leq k - 1$ for every induced subgraph H_1 of H with $\emptyset \neq V(H_1) \subsetneq V(H)$;

(IV) $|E(B)| \leq k + 1$ for every branch $B \in \mathcal{B}(G) \setminus \mathcal{B}_H(G)$;

(V) $|E(B)| \leq k$ for every branch B in $\mathcal{B}_1(G)$.

Note that if we only consider 2-connected graphs then Condition (V) in the definition of $EU_k(G)$ is superfluous.

For any subset S of $\mathcal{B}(G)$, we denote by $G - S$ the subgraph obtained from G by deleting all edges and internal vertices of branches of S. A subset S of $\mathcal{B}(G)$ is called a branch cut if $G - S$ has more components than G. A minimal branch cut is called a branch-bond. Obviously, for a connected graph G, a subset S of $\mathcal{B}(G)$ is a branch-bond if and only if $G - S$ has exactly two components. We denote by $\mathcal{BB}(G)$ the set of branch-bonds of G. A branch-bond is called odd if it consists of an odd number of branches. The length of a branch-bond $S \in \mathcal{BB}(G)$, denoted by $l(S)$, is the length of a shortest branch in S. Let $\mathcal{BB}_1(G) = \mathcal{B}_1(G)$, $\mathcal{BB}_2(G) = \{S \in \mathcal{BB}(G) \setminus \mathcal{BB}_1(G) : |S| = 1\}$, and let $\mathcal{BB}_3(G) = \{S \in \mathcal{BB}(G) : |S| \geq 3$ and S is odd$\}$. For $i \in \{1, 2, 3\}$, define

$$h_i(G) = \begin{cases} \max\{l(S) : S \in \mathcal{BB}_i(G)\} & \text{if } \mathcal{BB}_i(G) \neq \emptyset, \\ 0 & \text{if } \mathcal{BB}_i(G) = \emptyset. \end{cases}$$

The following result is known.

Theorem 7 (Xiong, Broersma, Li and Li, [13]). Let G be a connected graph. Then

$$h(G) \leq \max\{h_1(G), h_2(G) - 1, h_3(G) + 1\},$$

and if $h(G) \geq 1$, then

$$h(G) \geq \max\{h_1(G), h_2(G) - 1, h_3(G) - 1\}.$$

Since $h_i(G) = 0 (i = 1, 2)$ for a 2-connected graph G and $h_3(G) \leq 1$ if G is hamiltonian, Theorem 7 also holds for the graph G with $h(G) = 0$ and one can obtain the following result from the above result.

Theorem 8. Let G be a 2-connected graph that is not a path. Then

$$h_3(G) - 1 \leq h(G) \leq h_3(G) + 1.$$

The following characterization of eulerian graphs involves branch-bonds.

Theorem 9 (Xiong, Broersma, Li and Li, [13]). A connected graph is eulerian if and only if each branch-bond contains an even number of branches.

3. Proof of Theorem 2

In this section we present the proof of Theorem 2. By $S \triangle T$ we denote the symmetric difference $(S \setminus T) \cup (T \setminus S)$. Note that if H is an even graph, then $G[E(H) \triangle E(C)]$ is also an even graph, but $G[E(H) \triangle E(C)]$ may have more components than H.

The following well-know result will be used in our proof.

Theorem 10 (Veldman, [10]; Xiong, [11]). Let G be a graph with diameter at most two. Then $L(G)$ is hamiltonian.

Now we present the proof of Theorem 2.
Proof of Theorem 2. Suppose that G is not isomorphic to G_1 for any $l \geq 3$. Throughout the proof, we let u be a vertex with maximum degree in G. If $d(u) = \Delta(G) = 2$, then Theorem 2 holds trivially. Now assume that $d(u) \geq 3$. If there is no odd branch-bond in G, i.e., $h_3(G) = 0$, then $h(G) \leq 1$ by Theorem 8, we are done. So suppose that there is at least one odd branch-bond in G. Let B_0 be an odd branch-bond with $h_3(G) = \min |E(B)| : B \in B_0$, and let $I(B_0)$ be the set of inner vertices of branches in B_0. Then we have the following fact.

Claim 1. There are at least $3(h_3(G) - 1)$ vertices in $I(B_0)$ such that there are at most two vertices which are adjacent to the neighbors of u among the $3(h_3(G) - 1)$ inner vertices.

Proof of Claim 1. It follows from the fact that G is a 2-connected graph that is not isomorphic to G_1.

Claim 2. $h_3(G) \leq \frac{n-\Delta(G)}{3} + 1$.

Proof of Claim 2. By the definition of an odd branch-bond, besides u there is at least one that does not belong to $I(B_0) \cup N(u)$. Hence $3(h_3(G) - 1) + (\Delta(G) - 2) + 2 \leq n$ by Claim 1, which completes the proof of Claim 2.

To prove that $h(G) \leq \frac{n-\Delta(G)}{3}$, we distinguish the following three cases.

Case 1. $3 \leq n - \Delta(G) \leq 5$.

We claim that $h(G) \leq 1$, i.e., $L(G)$ is hamiltonian. By $n - \Delta(G) \leq 5$, $|V(G) \setminus (N(u) \cup \{u\})| \leq 4$. Hence the hypothesis that G is 2-connected implies that $d_G(u, x) \leq 3$ for any vertex $x \in V(G)$ and there exist at most two vertices for which the equality is achieved. If $V(G) \setminus (N(u) \cup \{u\}) = \emptyset$, then we are done by Theorem 10. Hence we only need to consider the case that $V(G) \setminus (N(u) \cup \{u\}) \neq \emptyset$.

If there is a vertex x with $d_G(u, x) = 3$, then there is a cycle containing u and x since G is 2-connected. Now we choose a cycle C_1 containing u and x, such that

1. C_1 contains a maximum number of vertices of $V(G) \setminus N(u)$;
2. subject to (1), C_1 contains a maximum number of vertices of degree two.

Note that C_1 contains at least three vertices in $V(G) \setminus (N(u) \cup \{u\})$. Hence $V(G) \setminus (N(u) \cup V(C_1))$ has at most one element. Now let H be an eulerian subgraph containing $V(C_1)$ with a maximum number of edges. Then we claim that H is a dominating eulerian subgraph of G. We will prove this by contradiction. If possible, suppose that there is an edge st such that $s, t \not\in V(H)$. First suppose that $s, t \in N(u)$. Then $G[\{E(H) \cup \{us, ut, st\}\}]$ is an eulerian subgraph containing $V(C_1)$ which has more edges than H, a contradiction. Now suppose that exactly one of s, t is not in $N(H)$, say $t \not\in N(u)$. Then either s or t is adjacent to a vertex in $N(u) \setminus \{s\}$ since G is a 2-connected graph that is not isomorphic to G_2, say t is adjacent to $v \in N(u) \setminus \{s\}$. Then $G[E(H) \Delta E(stus)]$ is an eulerian subgraph containing $V(C_1)$ which has more edges than H, a contradiction. This settles our claim which implies that $L(G)$ is hamiltonian by Theorem 5.

It remains to consider the case that $d_G(u, x) = 2$ for any vertex $x \in V(G) \setminus (N(u) \cup \{u\})$. Note that there are at most four such vertices by the hypothesis that G is a 2-connected graph with $n - \Delta(G) \leq 5$.

Let H be an eulerian subgraph containing u, such that

1. H contains a maximum number of vertices of G;
2. subject to (1), H contains a maximum number of edges of G.

Then we claim that H is a dominating eulerian subgraph of G, which implies that $L(G)$ is hamiltonian by Theorem 5. We will prove this by contradiction. If possible, suppose that there is an edge $st \in E(G)$ such that $\{s, t\} \cap V(H) = \emptyset$. First suppose that s, t are both in $N(u)$, then $G[E(H) \cup E(stus)]$ is an eulerian subgraph containing u that has more vertices than H, a contradiction. Next suppose that neither s nor t is in $N(u)$. If there are two distinct vertices in $N(u)$, say s' and t', which are adjacent to s and t, respectively, then $s'u, t'u \in E(H)$, and either $d_H(u) = 2$ or $d_H(u) \geq 4$ and $G[E(H) \Delta E(st'us's')]$ is disconnected (otherwise $H' = G[E(H) \Delta E(st'us's')]$ is an eulerian subgraph containing u that has more vertices than H, a contradiction). Hence since G is 2-connected, there is a path P of G between $G[\{s, t, s', t'\}]$ and $G[N(u) \setminus \{s', t'\}]$ such that P does not contain u. Without loss of generality, we assume that $P' = P(t', v)$ is a shortest path of G between $G[\{s, t, s', t'\}]$ and $G[N(u) \setminus \{s', t'\}]$ such that $u \not\in V(P')$, endvertices t' and v in $N(u) \setminus \{s', t'\}$. Note that if w_1, w_2 are two vertices in $N(u)$ with $w_1w_2 \in E(H)$, then at least one of $\{uw_1, uw_2\}$ is in $E(H)$ (otherwise $G[E(H) \Delta E(uw_1w_2u)]$ is an eulerian subgraph containing u that has more edges than H, a contradiction). Hence since there are at most two vertices in $V(G) \setminus \{u, s, t\}$, $G[E(H) \Delta E(us's't't')] \cup E(P') \cup \{uv\}$ is an eulerian subgraph containing u that has more vertices than H, a contradiction. So s, t are adjacent to the same vertex w in $N(u)$. Hence $w \not\in V(H)$ since
otherwise we can add the triangle stw to H to obtain a new eulerian subgraph containing u that has more vertices than H, a contradiction. Since G is 2-connected, there is a vertex w' of $V(G) \setminus (N(u) \cup \{u\})$ that is adjacent to one of $\{s, t\}$, say, $w' \in N(t)$. By the hypothesis that $d_G(u, x) = 2$ for any vertex $x \in V(G) \setminus (N(u) \cup \{u\})$, w' is adjacent to $N(u)$, say, $w''' \in E(G)$ and $w'' \in N(u)$. Note that there is at most one vertex in $V(G) \setminus (N(u) \cup \{u, s, t, w'''\})$. Hence $H' = G[E(G) \cup E(\{w'''w'w''u\})]$ is an eulerian subgraph containing u that has more vertices than H, a contradiction. Finally suppose that exactly one of $\{s, t\}$ is in $N(u)$, say $s \in N(u)$. If t is adjacent to a vertex $t_1 \in N(u)$, then $G(E[H] \cup E(st_1uus)]$ is an eulerian subgraph containing u that has more vertices than H, a contradiction. Hence t is adjacent to a vertex $t_1 \notin N(u) \cup \{u\}$. By the previous arguments, we may assume $t_1 \in V(H)$. Then $G[E(H) \cup E(usttt_1tu)]$ is not connected for any vertex $t_2 \in N(u) \cap N(t_1)$ (otherwise $G[E(H) \cup E(usttt_1tu)]$ is an eulerian subgraph containing u that has more vertices than H, a contradiction). Hence for each $t' \notin N(t_1) \cap (N(u) \setminus \{s\})$, we have that $t't'u \in E(H)$, $d_H(t') \geq 4$ and neither of $\{t't', t'u\}$ is in any triangle of H. Note that there are at most two vertices in $V(G) \setminus (N(u) \cup \{u, t, t_1\})$. Hence since $d_H(t_1)$ is a positive even integer, there is a vertex $t_2 \in \overline{N(t_1)} \cap N(H)(u)$ such that $N(t_1) \cap N(u) \neq \emptyset$, say $t_3 \in N(t_2) \cap N(u) \neq \emptyset$. Since t_2u is not in any triangle of H, there is at least one of $\{t_2t_3, t_3u\}$ that is not in $E(H)$. Hence $G[E(H) \cup E(usttt_1tttt_3u)]$ is an eulerian subgraph containing u that has more vertices than H, a contradiction. This settles the case.

Case 2. $6 \leq n - \Delta(G) \leq 8$.

We claim that $h(G) \leq 2$. By the hypothesis that $6 \leq n - \Delta(G) \leq 8$ and G is 2-connected, $d_G(u, x) \leq 5$ for any vertex $x \in V(G) \setminus N(u)$ and there is at most one vertex for which the equality is achieved. If $V(G) \setminus (N(u) \cup \{u\}) = \emptyset$, then we are done by Theorem 10. Hence we distinguish the following three subcases.

Subcase 2.1. There is a vertex x with $d_G(u, x) = 5$. Then there is a cycle C containing u and x since G is 2-connected. Note that C contains exactly 10 vertices. Hence C is a cycle of G containing all vertices of $V(G) \setminus N(u)$. Let C' be an eulerian subgraph of $G - E(C)$ with a maximum number of edges. Then $C \cup C'$ is a dominating eulerian subgraph of G, which implies that $h(G) \leq 1$ by Theorem 5.

Subcase 2.2. $d_G(u, x) \leq 4$ for any vertex $x \in V(G)$ and there is at least a vertex x_0 with $d_G(u, x_0) = 4$. Since G is 2-connected, there exists a cycle containing u and x_0. We choose a cycle C_1 containing u and x_0, such that

1. C_1 contains a maximum number of branches of length four;
2. C_1 subject to (1), C_1 contains a maximum number of vertices in $V(G)$.

Let C_2 be an eulerian subgraph containing $V(C_1)$ with a maximum number of edges of G and H the graph obtained from C_2 by adding the remaining vertices of $\bigcup_{i=3}^{2\Delta(G)} V_i(G)$ as isolated vertices in H. Then we claim that $H \in EU_2(G)$, which implies that $h(G) \leq 2$ by Theorem 6. It suffices to prove that H satisfies the conditions (I)–(IV) since G is 2-connected. By the choice of H, H satisfies (I) and (II). Note that there are at most two vertices in $V(G) \setminus (V(C_1) \cup N(u))$. Hence since any vertex w in $V(H) \setminus V(C_2)$ has degree at least three, if w has no neighbor in $V(C_1)$, then w has at least two neighbors w_1, w_2 in $N(u)$ and w_1, w_2 are both in $V(C_2)$ (otherwise $C_2 = G[E(C_2) \cup E(w,w_1w_2w)]$ is an eulerian subgraph containing $V(C_1)$ that has more edges than C_2, a contradiction). This implies that H satisfies (III). It remains to prove that H satisfies (IV). We will prove this by contradiction. If possible, suppose that there is a branch B_0 of length at least four such that $E(B_0) \cap E(H) = \emptyset$. Since $|V(G) \setminus (V(C_1) \cup N(u))| \leq 2$, B_0 has length four and u is an endvertex of B_0. Let u' be the other endvertex of B_0. Then $u' \notin N(u) \cup V(C_1)$. First suppose that u' is in $N(u) \setminus V(C_1)$, then $G[E(C_2) \cup (E(B_0) \cup \{u'u\})]$ is an eulerian subgraph containing $V(C_1)$ that has more edges than C_2, a contradiction. Next suppose that u' is in $V(C_1) \setminus \{x_0\}$, then $G[E(C_1) \cup (E(B_0) \cup E(P(u, w)))$, where $P(u, w)$ is the section of C_1 from u to w that does not contain x_0, is a cycle that has more vertices than C_1, which contradicts (2). Finally suppose that $u' = x_0$. Hence since G is not isomorphic to G_4, C_1 contains at most one branch of G with length four. Then $G[E(C_1) \cup (E(B_0) \cup E(P(u, x_0)))$, where $P(u, x_0)$ is the section of C_1 from u to x_0 that contains no branch of length four, is a cycle containing more branches of length four than C_1, this contradicts (1). This proves that H satisfies (IV). Hence $H \in EU_2(G)$ implies that $h(G) \leq 2$. This settles the subcase.

Subcase 2.3. $2 \leq d_G(u, x) \leq 3$ for any vertex $x \in V(G) \setminus (N(u) \cup \{u\})$. Since the empty subgraph of G with the vertex set $\bigcup_{i \geq 3} V_i(G)$ satisfies (I) and (II), we can choose a subgraph H of G with (I) and (II), such that

1. H contains a maximum number of branches of length at least four;
2. H subject to (1), $\max_{\theta \in V(H)} d_H(H_1, H - H_1)$ is minimized;
(3) subject to the above, H contains a minimum number of induced subgraphs F for which $d_G(F, H - F) = \max_{\emptyset \neq V(H) \subseteq V(H)} d_G(H_1, H - H_1)$.

Then we claim that $H \in EU_2(G)$. We will prove that H satisfies (IV) by contradiction. If possible, suppose that B_0 is a branch of length at least four with endvertices w_1 and w_2, such that $E(B_0) \cap E(H) = \emptyset$. Let $P(u, w_1)$ and $P(u, w_2)$ be two shortest paths from u to w_1 and w_2, respectively. Then $|E(P(u, w_1))| \leq 3$. Let H' be the subgraph obtained from $H_1 = G[E(H) \triangle E(B_0) \cup E(P(u, w_1)) \cup E(P(u, w_2))]$ by adding the remaining vertices of $\bigcup_{i=3}^{\Delta(G)} V_i(G)$ as isolated vertices in H'. Then H' is a subgraph with (I) and (II) that contains more branches of length at least four than H, a contradiction which implies that H satisfies (IV).

It remains to prove that $d_G(H_1, H - H_1) \leq 1$ for every induced subgraph H_1 of H with $\emptyset \neq V(H_1) \subseteq V(H)$. We will prove this by contradiction. If possible, suppose that there is an induced subgraph F of H with $\emptyset \neq V(F) \subseteq V(H)$, such that $d_G(F, H - F) = \max_{\emptyset \neq V(H) \subseteq V(H)} d_G(H_1, H - H_1) \geq 2$, then every shortest path between F and $H - F$ is a branch of G, and there are at least two branches between F and $H - F$ since G is 2-connected. Without loss of generality, suppose $u \in V(F)$. First suppose that $H - F$ is nontrivial. Take any two branches B_1, B_2 between F and $H - F$. Let $V(B_i) \cap V(F) = \{u_i\}$ and $V(B_i) \cap V(H - F) = \{v_i\}$. Then $d_G(u_i, u_i) (i \in \{1, 2\})$ and $d_G(v_1, v_2)$ are at most two (otherwise, since G is 2-connected, there is a vertex w such that $d_G(u, w) \geq 4$, a contradiction). Let $P_i = P(u_i, u_i)$ ($P_3 = P(v_1, v_2)$, respectively) be a shortest path between u_i and u_i for $i \in \{1, 2\}$ (between v_1 and v_2, respectively). Then $|E(P_i)| \leq 2$ for $i \in \{1, 2, 3\}$. Note that if P_i has an inner vertex of degree two which is in $V(H)$, then there is another path of H between the endvertices of P_i. Let H' be the subgraph obtained from $G[E(H) \triangle (\bigcup_{i=1}^{3} E(P_i) \cup E(B_i))]$ by adding the remaining vertices of $\bigcup_{i=3}^{\Delta(G)} V_i(G)$ as isolated vertices in H'. Then H' is a subgraph with (I) and (II) that has less induced subgraphs F for which $d_G(F, H' - F) = \max_{\emptyset \neq V(H) \subseteq V(H')} d_G(H_1, H' - H_1)$ than H, contradicting (3). Now suppose that $H - F$ is trivial, then there are at least three branches between F and $H - F$. Then there are two branches B_1, B_2 between F and $H - F$, such that, there is a path $P(u_1, u_2)$ between $u_1 \in V(B_1) \cap V(F)$ and $u_2 \in V(B_2) \cap V(F)$ such that $|E(B) \cap E(P(u_1, u_2))| \leq 2$ for any branch $B \in B(G)$ (otherwise, since G is 2-connected, there is a vertex w such that $d_G(u, w) \geq 4$, a contradiction). Let H' be the subgraph obtained from $G[E(H) \triangle (E(B_1) \cup E(B_2) \cup E(P(u_1, u_2)))]$ by adding the remaining vertices of $\bigcup_{i=3}^{\Delta(G)} V_i(G)$ as isolated vertices in H'. Then H' is a subgraph with (I) and (II) that has less induced subgraphs F for which $d_G(F, H' - F) = \max_{\emptyset \neq V(H) \subseteq V(H')} d_G(H_1, H' - H_1)$ than H, contradicting (3). This implies that H satisfies (III). Hence $H \in EU_2(G)$. This settles the subcase.

Case 3. $n - \Delta(G) \geq 9$.

If $h_3(G) \leq \frac{n - \Delta(G)}{3} - 1$, then $h(G) \leq h_3(G) + 1 \leq \frac{n - \Delta(G)}{3}$ by Theorem 8 and we are done. It remains to consider the case that $\frac{n - \Delta(G)}{3} - 1 < h_3(G) \leq \frac{n - \Delta(G)}{3} + 1$ by Claim 2. Hence, $h_3(G) \geq 3$. We will prove that $h(G) \leq h_3(G) - 1$. Let H be a subgraph of G with (I) and (II) such that

(1) H contains a maximum number of branches of length at least $h_3(G) + 1$;

(2) subject to (1), $\max_{\emptyset \neq V(H) \subseteq V(H)} d_G(H_1, H - H_1)$ is minimized;

(3) subject to the above, H contains a minimum number of induced subgraphs F for which $d_G(F, H - F) = \max_{\emptyset \neq V(H) \subseteq V(H)} d_G(H_1, H - H_1)$.

We claim that $H \in EU_{h_3(G) - 1}(G)$. It suffices to prove that H satisfies the conditions (III) and (IV). We have the following fact.

Claim 3. There are at most six vertices in $V(G) \setminus (I(B_0) \cup N(u) \cup \{u\})$.

Proof of Claim 3. We prove Claim 3 by contradiction. If possible, suppose that there are at least seven vertices in $V(G) \setminus (I(B_0) \cup N(u) \cup \{u\})$, then $3(h_3(G) - 1) + (\Delta(G) - 2) + 1 + 7 \leq n$ by Claim 1, i.e., $h_3(G) \leq \frac{n - \Delta(G)}{3} - 1$, a contradiction. This completes the proof of Claim 3.

We will prove that H satisfies (III) by contradiction. If possible, suppose that there is an induced subgraph F of H such that $d_G(F, H - F) = \max_{\emptyset \neq V(H) \subseteq V(H)} d_G(H_1, H - H_1) \geq h_3(G) - 1$, and hence there is a shortest path P between F and $H - F$ such that $|E(P)| \geq h_3(G) - 1$. Then P is a branch of G and $\bigcup_{B \in B_0} E(B)$ is a subset of either of $\{E(F), E(H - F)\}$. Since G is 2-connected, there are at least two branches between F and $H - F$ and hence there is a cycle containing the two branches. We choose a cycle C' containing at least one vertex of $V(G) \setminus (V(F) \cup V(H - F))$ such that the length of a longest branch of G whose edges belong to $E(C') \cap (E(F) \cup E(H - F))$ is minimum. Then C' has at least one branch of G whose inner vertices are in $V(F) \cup V(H - F)$ with length at least
If $h_3(G) - 1$ (otherwise $H' = G[E(H) \triangle E(C')]$ is a subgraph with (I) and (II) that has less induced subgraphs F for which $d_G(F, H' - F) = \max_{\emptyset \neq V(H') \subseteq V(H')} d_G(H_1, H' - H_1)$ than H, a contradiction). Hence B_0 contains exactly three branches (otherwise, since there are at least $5(h_3(G) - 1)$ inner vertices of branches in B_0 such that there are at most four vertices which are adjacent to the neighbors of u among the $5(h_3(G) - 1)$ inner vertices, $5(h_3(G) - 1) + (\Delta(G) - 5) + 2(h_3(G) - 2) + 5 \leq n$, i.e., $h_3(G) \leq \frac{n - \Delta(G)}{3}$ which implies that $h_3(G) \leq \frac{n - \Delta(G)}{3} - 1$ since $h_3(G)$ is an integer, a contradiction). Note that C' contains an even number of branches in B_0 by the definition of odd branch-bonds. First suppose that C' contains no branches of B_0, then there are at least $2(h_3(G) - 2) + 3 + 2 \geq 7$ vertices in $V(G) \setminus (I(B_0) \cup N(u) \cup \{u\})$, which contradicts Claim 3. Now suppose that C' contains exactly two branches B_1, B_2 in B_0. Then there are at least one of B_1, B_2 with length at least $h_3(G) + 1$ (otherwise, if the inner vertices of both of B_1, B_2 belong to $V(F) \cup V(H - F)$, then by Claim 1, $3(h_3(G) - 1) + (\Delta(G) - 2) + 2(h_3(G) - 2) + 1 + 5 \leq n$ which implies that $h_3(G) \leq \frac{n - \Delta(G)}{3}$, a contradiction). Hence there are at least $h_3(G) - 2 + 4$ vertices in $V(G) \setminus (I(B_0) \cup N(u) \cup \{u\})$, $2h_3(G) + (h_3(G) - 1) + (\Delta(G) - 2) + 1 + (h_3(G) - 2) + 4 \leq n$ by Claim 1. So $h_3(G) \leq \frac{n - \Delta(G)}{4}$, which implies that $h_3(G) \leq \frac{n - \Delta(G)}{3} - 1$ since $h_3(G)$ is an integer, a contradiction. This proves that H satisfies (III).

It remains to prove that H satisfies (IV). We will prove this by contradiction. If possible, suppose that there is a branch $B_0 \in \mathcal{B}(G) \setminus \mathcal{B}_H(G)$ with $|E(B_0)| \geq h_3(G) + 1$. Let u and v be two endvertices of B_0 and $S(u, B_0)$ be a branch-bond containing B_0 such that any branch of $S(u, B_0)$ has u as an endvertex. Since G is 2-connected, $|S(u, B_0)| \geq 2$.

By the following algorithm, we first find a cycle of G that contains B_0 and then obtain a contradiction.

Algorithm B_0.

1. If $|S(u, B_0)|$ is even, then select a branch $B_1 \in S(u, B_0) \setminus (\mathcal{B}_H(G) \cup \{B_0\})$ by **Theorem 9**. Otherwise, since $|E(B_0)| \geq h_3(G) + 1$, select a branch $B_1 \in S(u, B_0)$ with $|E(B_1)| = l(S(u, B_0)) \leq h_3(G)$ (obviously $B_1 \neq B_0$) and let $u_1 (\neq u)$ be the other endvertex of B_1. If $u_1 = v$, then set $t := 1$ and stop. Otherwise $i := 1$.

2. Select a branch-bond $S(u_i, B_0)$ in G which contains B_0 but not B_1, B_2, \ldots, B_i such that any branch in $S(u_i, B_0)$ has exactly one endvertex in $\{u_1, u_2, \ldots, u_i\}$. If $|S(u_i, B_0)|$ is even, then, by **Theorem 9**, select a branch $B_{i+1} \in S(u_i, B_0) \setminus (\mathcal{B}_H(G) \cup \{B_0\})$.

 Otherwise, since $|E(B_0)| \geq h_3(G) + 1$, select a branch $B_{i+1} \in S(u_i, B_0)$ such that $|E(B_{i+1})| = l(S(u_i, B_0)) \leq h_3(G)$ (obviously $B_{i+1} \neq B_0$), and let u_{i+1} be the endvertex of B_{i+1} that is not in $\{u_1, u_2, \ldots, u_i\}$. If $u_{i+1} = v$, then set $t := i + 1$ and stop. Otherwise replace i by $i + 1$ and return to step 2.

 Note that $|\mathcal{B}(G)|$ is finite, and $d_G(v) \geq 2$ implies that Algorithm B_0 will stop after a finite number of steps. Note that $G[\bigcup_{i=0}^{L} E(B_i)]$ is connected. Furthermore, since $u_t = v$ and $|S(u_t, B_0)| \geq 2$, $G[\bigcup_{i=0}^{L} E(B_i)]$ has a cycle C_0 of G which contains B_0. Let H' be the subgraph of G obtained from $G[E(H) \triangle E(C_0)]$ by adding the remaining vertices of $\bigcup_{i=0}^{L} V_i(G)$ as isolated vertices in H'. By the choice of B_j, $|E(B_j)| \leq h_3(G)$ for $B \in \mathcal{B}_H(G) \cap \{B_1, B_2, \ldots, B_j\}$. Hence, since B_0 is in C_0, H' is a subgraph with (I) and (II) that has less branches of length $h_3(G) + 1$ than H, a contradiction. Hence H satisfies (IV). This proves that $H \in EU_{h_3(G) - 1}(G)$, which implies that $h(G) \leq h_3(G) - 1 \leq \frac{n - \Delta(G)}{3}$. The proof of **Theorem 2** is completed. □

By the proof of **Theorem 2**, one can obtain the following result which answers partly a question proposed in [13].

Theorem 11. Let G be a 2-connected simple graph of order n. Then if $h_3(G) \geq \frac{n - \Delta(G)}{3} - 2 \geq \frac{7}{3}$ then $h(G) = h_3(G) - 1$.
4. Proof of Theorem 4

Before giving the proof of Theorem 4, we state the following well-known result involving the vertex degree sequence of a graph.

Theorem 12 (Chvátal [5]). Let G be a simple graph with vertex degrees $d_1 \leq d_2 \leq \cdots \leq d_n$, where $n \geq 3$. If $i < \frac{n}{2}$ implies that $d_i > i$ or $d_{n-i} \geq n - i$, then G is hamiltonian.

We need its following consequence. By $[x]$ we denote the minimum integer not less than x.

Theorem 13. Let G be a simple graph of order $n \geq 14$ with $h_3(G) \geq \frac{n+4}{6}$. Then \overline{G} is hamiltonian.

Proof of Theorem 13. Let B_0 be an odd branch-bond in $BB_3(G)$ such that $h_3(G) = \min \{|E(B)| : B \in B_0\}$. Then there are at least $3(h_3(G) - 1) \geq \frac{n}{2} - 1$ inner vertices of branches of B_0 which have degree exactly $n - 3$ in \overline{G} and there is at least one vertex w of G that is not adjacent to $[\frac{n}{2}] - 1$ vertices of the $3(h_3(G) - 1)$ inner vertices and the neighbor of one of the $[\frac{n}{2}] - 1$ vertices. Hence w has at least $[\frac{n}{2}] - 1 + 1$ neighbors in \overline{G} and so $d_{\overline{G}}(w) \geq \frac{n}{2}$. The other $n - 3(h_3(G) - 1) - 1$ vertices have degree at least $3(h_3(G) - 2) \geq \frac{n-8}{2} \geq 3$ in \overline{G}. Hence \overline{G} satisfies the conditions of Theorem 12, which implies that \overline{G} is hamiltonian. \(\Box\)

Now we present the proof of Theorem 4.

Proof of Theorem 4. Without loss of generality, we can assume that neither G nor \overline{G} is hamiltonian, and $L(\overline{G})$ is hamiltonian. Then $\Delta(G) \geq \frac{n-1}{4}$ since otherwise $\delta(\overline{G}) = n - 1 - \Delta(G) \geq \frac{3}{2}$ which implies that \overline{G} is hamiltonian by Theorem 12, a contradiction.

We distinguish the following cases to finish our proof.

Case 1. $h_3(G) \leq \frac{n-9}{6}$.

By Theorem 8, $h(G) \leq h_3(G) + 1 \leq \frac{n-3}{6}$ and then we are done.

Case 2. $\frac{n-9}{6} < h_3(G) < \frac{n+4}{6}$.

Let B_0 be an odd branch-bond in $BB_3(G)$ such that $h_3(G) = \min \{|E(B)| : B \in B_0\}$. Then B_0 has exactly three branches. We will prove this by contradiction. If possible, suppose that B_0 has at least five branches, then B_0 has at least $5(h_3(G) - 1) \geq \frac{n}{2}$ inner vertices of degree 2 in G. Hence \overline{G} has at least $[\frac{n}{2}]$ vertices of degree 2. Hence \overline{G} satisfies the conditions of Theorem 12, which implies that \overline{G} is hamiltonian, a contradiction. Hence B_0 has exactly three branches. Let $B_0 \in B_0$ with $|E(B_0)| = h_3(G)$. Taking two branches B_1, B_2 that are not B_0, there is a cycle C_0 in G containing B_1, B_2 by the definition of an odd branch-bond. Now let H be the subgraph obtained from C_0 by adding all vertices in $(\bigcup\limits_{i=3}^{\Delta(G)} V_i(G)) \setminus V(C_0)$ as isolated vertices in H. Then H satisfies (I) and (II). We claim that $H \in E U_{h_3(G)-1}(G)$. It suffices to prove that H satisfies (III) and (IV). Since $\Delta(G) \geq \frac{n-1}{4}$ and $\Delta(G) < \frac{n+4}{6}$, there are at most $n - 3(h_3(G) - 2) - \Delta(G) - 2 < 9$ vertices outside of $B_0 \cup N(u) \cup \{u\}$, where u is a vertex of G with maximum degree $\Delta(G)$. Hence $|E(B)| \leq 9 \leq h_3(G) - 2$ for every branch $B \in B(G) \setminus B_H(G)$, which implies that H satisfies (III) and (IV). Hence $H \in E U_{h_3(G)-1}(G)$, which implies that $h(G) \leq h_3(G) - 1 \leq \frac{n-3}{6}$ by Theorem 8.

Case 3. $h_3(G) \geq \frac{n+4}{6}$.

By Theorem 12, \overline{G} is hamiltonian, a contradiction. This completes the proof of Theorem 4. \(\Box\)

5. Sharpness

In this section, we discuss the sharpness of Theorems 2 and 4.

First we show that the result in Theorem 2 is sharp. To see this, we construct a graph G_0 from the graph G_l ($l \geq 2$) depicted in Theorem 2 and a nontrivial complete graph $K_{\Delta-2}$ of order $\Delta - 2$. Let w be a vertex of degree three in G_l and ww an edge of G_l. Now divide ww and denote the new vertex by x, and obtain the graph G_0 by identifying w with exactly one vertex of $K_{\Delta-2}$ and adding an edge wx, where v is a vertex of $K_{\Delta-2}$ that is not the identified vertex. Note that G_0 is a 2-connected simple graph such that $\Delta(G_0) = \Delta$, $|V(G_0)| - \Delta = 3(l - 1) \geq 3$ and
Theorem 8

Theorem 6

Theorem 4

Theorem 13

Fig. 2

Theorem 2

Theorem 4

G

G

Fig. 1

Theorem 6

References

Beijing Educational Committee, Contract Grant No. KM200511232004.

Acknowledgements

The authors would like to thank the referees for their valuable comments and careful reading. The first author was supported by the Nature Science Funds of China under Contract Grant No. 10671014 and by the Excellent Young Scholars Research Fund of BIT under Contract Grant No. 000Y07-28. The second author was supported by the Strengthen-education Program of Beijing for College, Contract Grant No. PXM2007 014215 044655 and the Fund of Beijing Educational Committee, Contract Grant No. KM200511232004.

References