Inverse problems for linear hyperbolic equations using mixed formulations

Arnaud Münch, Université Blaise Pascal, Clermont-Ferrand

We explore a direct method allowing to solve numerically inverse type problems for hyperbolic type equations. We first consider the reconstruction of the full solution of the wave equation posed in $\Omega \times (0,T) - \Omega$ a bounded subset of $\mathbb{R}^N -$ from a partial distributed observation. We employ a least-squares technic and minimize the L^2-norm of the distance from the observation to any solution. Taking the hyperbolic equation as the main constraint of the problem, the optimality conditions are reduced to a mixed formulation involving both the state to reconstruct and a Lagrange multiplier. Under usual geometric optic conditions, we show the well-posedness of this mixed formulation (in particular the inf-sup condition) and then introduce a numerical approximation based on space-time finite elements discretization. We show the strong convergence of the approximation and then discussed several examples for $N = 1$ and $N = 2$. The reconstruction of both the state and the source term is also discussed, as well as the boundary case as well as the parabolic case. Joint works with Nicolae Cindea. Details can be found in [1, 2] using arguments developed in [3, 4].

References

