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Abstract This paper addresses the dynamical behav-
ior of the linearized delayed ring neural network sys-
tem with a small-world connection. The semigroup
approach is adopted in investigation. The asymptotic
eigenvalues of the system are presented. It shows that
the spectrum of the system is located in the left half
complex plane and its real part goes to −∞ when the
connection weights between neurons are well-defined.
The spectrum determined growth condition is held true
and the exponential stability of the system is then es-
tablished. Moreover, we present the necessary condi-
tions for the neuron and feedback gains, for which
the closed-loop system is delay-independent exponen-
tially stable, and we further provide the sufficient and
necessary conditions when the concrete number of
neurons and the location of small-world connection
are given. Finally, numerical simulations are presented
to illustrate the convergence of the state for the system
and demonstrate the effect of the feedback gain on sta-
bility.
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1 Introduction

Since Hopfield in [3] introduced a continuous ver-
sion of a circuit equation for a network of n neurons,
a plenty of research in theory and application of neural
networks are appeared (see [1, 11] and the references
therein). With the pioneering work of Watts and Stro-
gatz [17], small-world networks have caused great in-
terest. Generally speaking, small-world network, like
most of the networks in biology, technology, and so-
cial sciences, is intermediate between regular network
and random network as well as a special type of com-
plex network with a high degree of local clustering and
a small average distance, which is obtained by ran-
domly adding a small fraction of connection in an orig-
inally nearest-neighbor coupled network. Many com-
mon networks such as power grids, financial networks,
internet servers, human communities, and disordered
porous media, behave like small-world networks.

There are many research progress on neural net-
works. For examples, Li and Chen (see [8]) prove
that Hopf bifurcation occurs in the small-world net-
works model with nonlinear interactions and time de-
lays by choosing the nonlinear interaction strength as
a bifurcation parameter; they also determine the sta-
bility of the bifurcating periodic solutions and the di-
rection of the Hopf bifurcation. In [9], Li and Chen
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Fig. 1 Schematic of a ring network with a small-world connec-
tion

got a more exciting conclusion that neural networks
with small-world connections are easier to be stabi-
lized than the regular fully-connected counterparts. In
addition, Hu, Xu, and Wang (see [4, 18, 20], and [19])
studied the dynamical behaviors of a neural network,
such as asymptotic stability, global stability, Hopf bi-
furcation and chaos. Especially, in [19], Xu and Wang
studied a delayed ring neural network with a small-
world connection and found that the design of a small-
world connection is a simple but efficient “switch” to
control the dynamics of the system. However, these
studies are mainly focused on the dynamics of neural
network, and there are fewer concerning on the stabil-
ity of neural networks with small-world connections
(short-cuts). On the other hand, it will be exciting to
investigate the stability of a neural network with small-
world connections from another point of view, such as
exponential stability, spectrum analysis, and stability
interval of the small-world connection strength.

In this paper, we are interested in a ring neural net-
work with a small world connection as shown in Fig. 1
(see [19]), which can be described by the so-called
Hopfield first-order functional-differential system:

ẋi (t) = −kxi(t) +
n∑

j=1

bijf
(
xj (t − τ)

)
,

i = 1,2, . . . , n, (1.1)

where xi(t) is the neuron response, k > 0 is the neu-
ron gains, f (u) = tanh(u) is the activation function of

neurons, τ > 0 is the time delay, and bij is the connec-
tion weight between neurons:

bij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�= 0, i = 1,2, . . . , n − 1, j = i + 1,

c, i = m,j = 1,

�= 0, i = n, j = 1,

0, otherwise.

bm1 = c �= 0 is the short-cut strength (for simplifica-
tion, only one short-cut is included here), and define

B = {bij }ni,j=1

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 b12 0 0 0 · · · 0

0 0 b23 0 0 · · · 0

...
...

. . .
. . .

...
...

...

c 0 0
. . . bm,m+1 · · · 0

...
...

...
... 0

. . .
...

0 0 0 · · · 0
. . . b(n−1)n

bn1 0 0 · · · 0 · · · 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(1.2)

The aim of this paper is to give a more detailed spectral
analysis of the system (1.1), and show that the spec-
trum determined growth condition is held. The expo-
nential stability is then established. Finally, the delay-
independent stability interval of c is also concluded.
This is completely different from the existed study in
the field of neural network.

The paper is organized as follows. In the next sec-
tion, we formulate the system (1.1) into an abstract
evolution equation and prove the well-posedness of the
system by the semigroup approach. Section 3 is de-
voted to the detailed spectral analysis of the system. It
is obtained that with some conditions required on the
connection weights between neurons, all eigenvalues
λn are located in the left half complex plane and their
real parts Reλn go to −∞ as n → ∞. The asymp-
totic spectral expression is also presented. In Sect. 4,
the spectrum determined growth condition is held true.
In Sect. 5, the exponential stability of the system and
the relation between stability and the value of c are
established. Finally, some numerical simulations are
presented in Sect. 6 to illustrate the eigenvalue distri-
butions, the stability of the system, and the effect of c

on stability.
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2 Setup and well-posedness of the system

In this section, we shall convert the system (1.1) into
an abstract evolution equation and then discuss the
well-posedness of the system.

Since f ′(0) = 1, it results in the linearized equation
of (1.1) at origin in the vectorizing form:

ẋ(t) = −kx(t) + Bx(t − τ), (2.1)

where x(t) = (x1(t), x2(t), . . . , xn(t))
T , and “T ” de-

notes the transpose of a vector or a matrix. It is natural
to set the initial date of (2.1) as the following:

{
x(0) = x0 = (x10, x20, . . . , xn0),

x(s) = φ(s), s ∈ [−τ,0], (2.2)

where x0 ∈ C
n,φ ∈ L2([−τ,0],C

n). We consider sys-
tem (2.1) in the Hilbert state space

H = C
n × L2([−τ,0],C

n
)

equipped with the usual inner product:

〈X,Y 〉H = 〈x, y〉Cn +
∫ 0

−τ

〈
f (s), g(s)

〉
Cnds, (2.3)

where X = (x, f )T ∈ H, Y = (y, g)T ∈ H. Define a
linear operator A : H → H by:

A
(

x

f

)
=
(−k Bδ1

0 d
ds

)(
x

f

)
(2.4)

with

D(A) = {
(x, f )T ∈ H |f ∈ H 1([−τ,0],C

n
)
,

f (0) = x
}
, (2.5)

where δ1f = f (−τ),∀f ∈ C[−τ,0] and B are given
by (1.2).

Denote

⎧
⎪⎪⎨

⎪⎪⎩

f (t, s) = x(t + s), s ∈ [−τ,0],
X(t) = (x(t), f (t, s))T ,

X(0) = X0 := (x0, φ(s))T , s ∈ [−τ,0],
(2.6)

then system (2.1) and (2.2) can be formulated into the
following abstract evolution equation on H:
{

dX(t)
dt

= AX(t), t > 0,

X(0) = X0.
(2.7)

Now we give the following two lemmas about the
properties of A.

Lemma 1 Let A be given by (2.4) and (2.5), and let

〈X,Y 〉1 = 〈x, y〉Cn +
∫ 0

−τ

q(s)
〈
f (s), g(s)

〉
Cnds, (2.8)

where X = (x, f )T ∈ H, Y = (y, g)T ∈ H, and

q(s) = τ−2‖B‖2s2 + 1 > 0

is a bounded function in s ∈ [−τ,0]. Then 〈·, ·〉1 is an
inner product in H and it is equivalent to the general
one given by (2.3). Moreover, there is a positive con-
stant M > 0 such that

Re〈AX,X〉1 ≤ M〈X,X〉1, ∀X ∈ D(A). (2.9)

Hence, A − M is dissipative in H.

Proof The first conclusion is obvious and we only
need to show (2.9). For each X = (x, f )T ∈ D(A), it
has

〈AX,X〉1 = 〈−kx + Bf (−τ), x
〉
Cn

+
∫ 0

−τ

q(s)

〈
d

ds
f (s), f (s)

〉

Cn

ds.

A direct computation to yield

Re〈AX,X〉1 ≤ −k‖x‖2
Cn + ‖B‖∥∥f (−τ)

∥∥
Cn‖x‖Cn

+ 1

2

∫ 0

−τ

q(s)
d

ds

∥∥f (s)
∥∥2

Cn ds

≤ −k‖x‖2
Cn + 1

2

(‖B‖2
∥∥f (−τ)

∥∥2
Cn

+ ‖x‖2
Cn

)

+ 1

2

(
q(s)

∥∥f (s)
∥∥2

Cn

∣∣0−τ

−
∫ 0

−τ

q ′(s)
∥∥f (s)

∥∥2
Cn ds

)
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=
(

−k + 1

2

)
‖x‖2

Cn

+ 1

2
‖B‖2

∥∥f (−τ)
∥∥2

Cn

+ 1

2
q(0)

∥∥f (0)
∥∥2

Cn

− 1

2
q(−τ)

∥∥f (−τ)
∥∥2

Cn

− 1

2

∫ 0

−τ

q ′(s)
∥∥f (s)

∥∥2
Cn ds

=
(

−k + 1

2
+ 1

2
q(0)

)
‖x‖2

Cn

+ 1

2

(‖B‖2 − q(−τ)
)∥∥f (−τ)

∥∥2
Cn

+
∫ 0

−τ

−q ′(s)
2q(s)

q(s)
∥∥f (s)

∥∥2
Cn ds.

Note that q(s) = τ−2‖B‖2s2 + 1, ∀s ∈ [−τ,0], then
we have
⎧
⎪⎪⎨

⎪⎪⎩

q(0) = 1, ‖B‖2 − q(−τ) < 0,

q ′(s) < 0, ∀s ∈ [−τ,0],
0 ≤ −q ′(s)

2q(s)
= −τ−2‖B‖2s

τ−2‖B‖2s2+1
≤ τ−2‖B‖2|s|

2τ−1‖B‖|s| = ‖B‖
2τ

.

Let

M = max

{
−k + 1,

‖B‖
2τ

}
.

Then we conclude

Re〈AX,X〉1 ≤ M

[
‖x‖2

Cn +
∫ 0

−τ

q(s)
∥∥f (s)

∥∥2
Cn ds

]

= M〈X,X〉1.

This is the required (2.9). The proof is complete. �

Lemma 2 Let A be given by (2.4) and (2.5) and
let

Δ(λ) = λ + k − Be−λτ

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ + k −b12e
−λτ 0 0 0 · · · 0

0 λ + k −b23e
−λτ 0 0 · · · 0

...
...

. . .
. . .

...
...

...

−ce−λτ 0 0
. . . −bm,m+1e

−λτ · · · 0
...

...
...

... λ + k
. . .

...

0 0 0 · · · 0
. . . −b(n−1)ne

−λτ

−bn1e
−λτ 0 0 · · · 0 · · · λ + k

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.10)

where λ ∈ C. If detΔ(λ) �= 0, then λ ∈ ρ(A), the
resolvent set of A. Moreover, (λ − A)−1, the resol-
vent of A, is compact and it has the following expres-
sions:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(λ − A)−1Y = X = (x, f (s))T ∈ D(A),

∀Y = (y, g(s))T ∈ H,

x = Δ(λ)−1
[
y + B

∫ 0
−τ

e−λ(τ+s)g(s) ds
]
,

f (s) = eλsx + ∫ 0
s

eλ(s−ξ)g(ξ) dξ.

(2.11)

In particular,

σ(A) = {
λ ∈ C | detΔ(λ) = 0

}
.

Proof The proof is a direct computation and we omit
it here. �

Theorem 1 Let A be given by (2.4) and (2.5). Then A
generates a C0-semigroup eAt in H.
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Proof From Lemma 1, it has that A − M is dissipa-
tive in H and from Lemma 2, we get the right half
complex plane belongs to the resolvent set of A − M .
Then, by the Lumer–Phillips theorem, A − M gener-
ates a C0-semigroup of contractions e(A−M)t in H.
Moreover, the bounded perturbation theorem of C0-
semigroups implies that A generates a C0-semigroup
eAt in H (see [12]). The proof is complete. �

3 Spectral analysis of the system

In this section, we are going to analyze the spectrum
distribution of the system operator A. Some analytic
methods in [2, 16], and [21] will be adopted here.
From Lemma 2, it has that λ ∈ σ(A) if and only if
detΔ(λ) = 0. So we only need to discuss the roots of
detΔ(λ). Note that

detΔ(λ) = det
(
λ + k − Be−λτ

)

= (λ + k)n − cγ e−λmτ (λ + k)n−m − αe−λnτ

(3.1)

where

α =
n∏

j=1

bj,j+1, γ =
m−1∏

j=1

bj,j+1.

It is clear that (3.1) has infinite number of roots which
are not easy to be determined. Now we can turn to
study the eigenvalues of B , and then the roots of (3.1)
can be associated with the eigenvalues of B , as shown
in the following lemma, which is similar to Lemma 2.1
of [1].

Lemma 3 If λ is a root of (3.1), then there is an eigen-
value d of the matrix B for which d = (k+λ)eλτ . Con-
versely, for any eigenvalue d of B , any solution λ of the
equation d = (k + λ)eλτ will be a root of (3.1).

Proof A root of (3.1) must satisfy

det
(
λ + k − Be−λτ

)= 0

or, equivalently,

det
(
(λ + k)eλτ − B

)= 0.

Therefore, (λ + k)eλτ must equal to an eigenvalue
of the matrix B . Clearly, this characterize the roots
of (3.1). The proof is complete. �

Now the problem of “discussing the roots of
detΔ(λ)” has evolved into “discussing the roots of
d − (k + λ)eλτ = 0”. From now on, for brevity, we
denote

h(λ) = λ + k − de−λτ , (3.2)

where

d = Reiθ , R ≥ 0, 0 ≤ θ < 2π,

denotes any eigenvalue of B . Next we will dedicated
to analyze the root distribution of h(λ) = λ + k −
de−λτ = 0.

We have the following lemma directly (see Corol-
laries 2.3 and 2.7 of [1]).

Lemma 4 All eigenvalues ds of B satisfy

|ds | < k, ∀i = s,2, . . . , n, (3.3)

if and only if all roots of (3.1) or (3.2) have negative
real parts for all positive values of delay τ , where ds

are determined by connection weights bn1, bi,i+1, i =
1,2, . . . , n − 1 and short-cut strength c.

Lemma 5 Let h(λ) with λ ∈ C be given by (3.2). Then
there are at most two real root of h(λ) and each one is
negative if existed.

Proof If d is complex, then it follows from (3.2) that
h(λ) has no real root. If d is real, that is d = ±R, then
it follows from (3.2) that

h′(λ) = 1 + dτe−λτ = 1 ± Rτe−λτ .

(i) If d = R, then

h(λ) = λ + k − Re−λτ , h′(λ) = 1 + Rτe−λτ > 0.

So, we have that h(λ) is nondecreasing. Noting that

lim
λ→−∞h(λ) = −∞, lim

λ→0
h(λ) = k − R > 0,

lim
λ→+∞h(λ) = +∞,

we have that h(λ) only has one real and negative root.
(ii) If d = −R, then h(λ) = λ + k + Re−λτ and the

real root if existed must be negative. Noting that

h′(λ) = 1 − Rτe−λτ , h′′(λ) = Rτ 2e−λτ > 0,
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if h′(λ) = 0, there is the unique minimum point by
λ0 = −τ−1 ln(1/Rτ). On the other hand, noting that

lim
λ→−∞h(λ) = +∞, lim

λ→0
h(λ) = k + R > 0,

lim
λ→+∞h(λ) = +∞,

there are only five possible rough images for h(λ) as
Fig. 2. Thus, there are at most two real roots and each
one is negative if existed. The proof is complete. �

Lemma 6 Let h(λ) with λ ∈ C be given by (3.2) and
let the condition (3.3) be held. Then h(λ) has infinitely
many roots λn, n ∈ N in C

−, the left half complex
plane. Moreover, these roots satisfy

Reλn → −∞, as n → ∞. (3.4)

Proof The first decision is obvious because h(λ) is an
entire function in λ and there are infinitely many roots
in the complex plane. Moreover, from Lemma 4, these
roots are located in the left half complex plane. Fur-
thermore, if |λ| large enough and Reλ bounded, then
it gets
∣∣h(λ)

∣∣≥ |λ| − k − |d|e−τReλ > 0.

This yields that Reλn → −∞, as n → ∞. The proof
is complete. �

Lemma 7 Let h(λ) with λ ∈ C be given by (3.2). Then
all roots of h(λ) are simple except one possible root λ0

with its multiplicity two.

Proof Firstly, from the proof of Lemma 5, we have
that the possible real roots of h(λ) are simple except
one possible root λ0 with its multiplicity two. On the
other hand, if λ is a root of h(λ) with multiplicity two,
we have
{

h(λ) = λ + k − de−λτ = 0,

h′(λ) = 1 + dτe−λτ = 0.

These yield

de−λτ = − 1

τ
, λ + k + 1

τ
= 0.

So, λ = −k − 1
τ

∈ R
−, which implies that all the com-

plex roots of h(λ) are simple. The proof is complete. �

Now we are in a position to study the asymptotic
distribution of the roots of h(λ).

Proposition 1 Let h(λ) be given by (3.2). Then
h(λ) = λ + k − de−λτ , where d = Reiθ , has the roots
given by

σ
(
h(λ)

)= {
ξn, ξn

}
n∈N

∪ {νi}, i ∈ I, (3.5)

where νi is the real root of h(λ), I ⊆ {1,2}, and ξn has
the following asymptotic expression:

ξn = 1

τ

[
lnR − ln

θ + (
2n − 1

2

)
π

τ

]

+ i

[
θ + (

2n − 1
2

)
π

τ
− ln

θ+(2n− 1
2 )π

τ

τ
[
θ + (

2n − 1
2

)
π
]
]

+ O
(
n−1). (3.6)

Proof The real root of h(λ) has been discussed in
Lemma 5, we write it as νi, i ∈ I, I is an empty set,
{1} or {1,2}. Next, since the complex roots of h(λ) are
symmetric to the real axis, we only need to find the
roots of h(λ) located on the upper complex plane.

Let ξ = x + iy with y > 0 be a root of h(λ). Then
it follows from h(ξ) = 0 that

x + iy + k − Reiθ e−(x+iy)τ = 0,

i.e.,

x + iy + k − Re−xτ ei(θ−yτ) = 0,

which gives

x + k − Re−xτ cos(θ − yτ) = 0 (3.7)

and

y − Re−xτ sin(θ − yτ) = 0. (3.8)

A direct computation from (3.8) yields

exτ = R sin(θ − yτ)

y
. (3.9)

Substituting this into (3.7) to get

x = −k + y cos(θ − yτ)

sin(θ − yτ)
. (3.10)

By (3.9), and y > 0, we have sin(θ − yτ) > 0 that
means

θ − yτ ∈ (−2nπ, (−2n + 1)π
)
, n ∈ N (3.11)
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Fig. 2 The five possible
images of h(λ) when
d = −R

and

y ∈
(

θ + (2n − 1)π

τ
,

θ + 2nπ

τ

)
, n ∈ N. (3.12)

Moreover, it follows from (3.9) that

x = 1

τ
ln

R sin(θ − yτ)

y
. (3.13)

Plugging this into the left side of (3.10) to yield

ln
(
R sin(θ − yτ)

)− lny + kτ − yτ cos(θ − yτ)

sin(θ − yτ)
= 0.

Let

g(y) = ln
(
R sin(θ − yτ)

)− lny + kτ

− yτ cos(θ − yτ)

sin(θ − yτ)
.

Then we have

g′(y) = −τy sin 2(θ − yτ) − sin2(θ − yτ) − τ 2y2

y sin2(θ − yτ)

< 0,

where we have used (3.12). Since

lim
y→ θ+(2n−1)π

τ

g(y) = +∞, lim
y→ θ+2nπ

τ

g(y) = −∞.

Hence, there exists a unique root yn, n ∈ N, on each
interval
(

θ + (2n − 1)π

τ
,

θ + 2nπ

τ

)
, n ∈ N

such that g(yn) = 0. For each n ∈ N, by taking

xn = 1

τ
ln

R sin(θ − ynτ)

yn

, (3.14)

then ξn = xn + iyn is a root of h(λ).
When yn > R, it has xn < 0, and hence,

yn → +∞, xn → −∞, as n → +∞. (3.15)

Moreover, by (3.9) and (3.10), we have respectively

sin(θ − ynτ) = yne
xnτ

R
and

sin(θ − ynτ) = yn cos(θ − ynτ)

xn + k
.

This further gives

cos(θ − ynτ) = 1

R
(xn + k)exnτ . (3.16)

So, due to the fact that xn < 0 and xn → −∞, we have

∃N, s.t. xn + k < 0, if n ≥ N,

and cos(θ − ynτ) < 0. This together with (3.12) fur-
ther gives

yn ∈
(

θ + (2n − 1)π

τ
,

θ + (
2n − 1

2

)
π

τ

)
,

n ∈ N, n ≥ N. (3.17)

Furthermore, it follows from (3.15) and (3.16) that as
n → +∞,

(xn + k)exnτ → 0, cos(θ − ynτ) → 0,

θ − ynτ →
(

−2n + 1

2

)
π.

Therefore, we obtain the form of yn by the following:

yn = θ + (
2n − 1

2

)
π + εn

τ
, εn ∈

(
−π

2
,0

)
, (3.18)

where εn → 0, as n → +∞. Substituting (3.18) into
g(yn) = 0 to get

0 = g(yn) = ln
(
R sin(θ − ynτ)

)− lnyn + kτ

− ynτ cos(θ − ynτ)

sin(θ − ynτ)
.

This gives

lnR + ln(cos εn) − lnyn + kτ − ynτ sin εn

cos εn

= 0
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and

sin εn = cos εn

[
lnR

ynτ
+ ln cos εn

ynτ
− lnyn

ynτ
+ kτ

ynτ

]
.

Expanding by the Taylor’s series, we have

sin εn = − lnyn

ynτ
+ O

(
n−1), as n → +∞.

Note that sin εn = εn − ε3
n

3! + · · ·, we have

εn = − ln
θ+(2n− 1

2 )π

τ

θ + (
2n − 1

2

)
π

+ O
(
n−1).

Hence, from (3.18), we eventually obtain the asymp-
totic expression of yn by the following

yn = θ + (
2n − 1

2

)
π

τ
− ln

θ+(2n− 1
2 )π

τ

τ
[
θ + (

2n − 1
2

)
π
]

+ O
(
n−1), (3.19)

and plugging this into (3.14) to get the asymptotic ex-
pression of xn

xn = 1

τ
(lnR + ln cos εn − lnyn)

= 1

τ

[
lnR − ln

θ + (
2n − 1

2

)
π

τ

]
+ O

(
n−1).

Finally, we obtain the asymptotic expression ξn =
xn + iyn given by (3.6). The proof is complete. �

In summary, collecting Lemmas 4–7 and Proposi-
tion 1, we can obtain the following spectrum distribu-
tion of A easily.

Theorem 2 Let A be given by (2.4) and (2.5) and let
the condition (3.3) be held. Then we have the following
conclusions for the spectrum of A:

(1) for each λ ∈ σ(A), it has Re(λ) < 0;
(2) A has infinitely many eigenvalues λn, n ∈ N in

C
−, and Reλn → −∞, as n → ∞;

(3) A has only at most 2n real eigenvalues;
(4) all the eigenvalues of A are simple except at most

n real double eigenvalues;
(5) the spectrum σ(A) are all the roots of h(ds) =

λ+k−dse
−λτ , where ds = Rse

iθs , s = 1,2, . . . , n

are eigenvalues of B:

σ(A) =
n⋃

s=1

σ
(
h(ds)

)
(3.20)

where the roots of h(ds), s = 1,2, . . . , n are given
by Proposition 1, in which d,R, and θ are re-
placed by ds , Rs, and θs, respectively.

4 Spectrum-determined growth condition

In this section, we are going to consider the spectrum-
determined growth condition for the system (2.7),
which is one of the most difficult problems for infinite-
dimensional systems. Our proof is based on the fol-
lowing characterization condition [10, Corollary 3.40]
and this method has been used by the authors to treat
the heat system with memory [14] and the pendu-
lum system with position and delayed position feed-
backs [15].

Lemma 8 Let T (t) be a C0-semigroup on a Hilbert
space H with its generator A. Let ω(A) be the growth
bound of T (t) and

s(A) := sup
{
Reλ

∣∣ λ ∈ σ(A)
}

be the spectral bound of A. Then

ω(A) = inf
{
ω > s(A)

∣∣ sup
τ∈R

∥∥R(σ + iτ,A)
∥∥

< Mσ < ∞,∀σ ≥ ω
}
.

We also need the Lemma 1.2 of [13] (see also [6]).

Lemma 9 Let

D(λ) = 1 +
n∑

i=1

Qi(λ)eαiλ,

where Qi are polynomials of λ, αi are some complex
numbers, and n is a positive integer. Then for all λ

outside those circles of radius ε > 0 that centered at
the roots of D(·), one has

∣∣D(λ)
∣∣≥ C(ε) > 0

for some constant C(ε) that depends only on ε.
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Theorem 3 Let A be given by (2.4) and (2.5). Then
the spectrum-determined growth condition holds true
for eAt , that is, s(A) = ω(A).

Proof By Lemma 8, the proof will be accomplished if
we can show that for any λ �= 0 and λ = α + iβ with
α ≥ ω > s(A) and β ∈ R, there is a constant Mα such
that

sup
β∈R

∥∥R(α + iβ, A)
∥∥≤ Mα < ∞. (4.1)

Let λ = α + iβ ∈ C with α ≥ ω > s(A) and β ∈ R.
Then λ ∈ ρ(A). By Lemma 2, we have that ∀Y =
(y, g)T ∈ H, there exists X = R(λ, A)Y = (x, f )T ∈
D(A) given by (2.11). For convenience, we rewrite it
here:
{

x = Δ(λ)−1
[
y + B

∫ 0
−τ

e−λ(τ+s)g(s) ds
]
,

f (s) = eλsx + ∫ 0
s

eλ(s−r)g(r) dr.

Also by Lemma 2, we have

s(A) = sup
{
Reλ |λ ∈ σ(A)

}

= sup
{
Reλ | detΔ(λ) = 0

}
.

Denote

εα = inf
λ̂∈σ(A),β∈R

∣∣λ̂ − α − iβ
∣∣.

By Lemma 9, there is a positive constant C(εα) de-
pending on α such that

|detΔ(λ)|
|λ|n−1

= |(λ + k)n − cγ e−λmτ (λ + k)m − αe−λnτ |
|λ|n−1

≥ C(εα) > 0.

Noting that Δ(λ)−1 is a n × n matrix, after a tedious
computation, we have that there exists a positive con-
stant M̂1α > 0 depending on α such that

sup
β∈R

∥∥Δ(λ)−1
∥∥≤ M̂1α

C(εα)

.= M1α < ∞.

Due to the estimates,

∫ 0

−τ

e−λ(τ+s)e−λ(τ+s) ds =
∫ 0

−τ

e−2α(τ+s) ds

= 1 − e−2ατ

2α
,

∫ 0

−τ

eλseλs ds =
∫ 0

−τ

e2αs ds = 1 − e−2ατ

2α
,

∫ 0

s

eλ(s−r)eλ(s−r) dr =
∫ 0

s

e2α(s−r) dr = 1 − e2αs

2α

and

∫ 0

−τ

(
1 − e2αs

2α

)
ds = τ

2α
− 1 − e−2ατ

4α2
,

there exist two positive constant numbers M2α,M3α

depending on α such that

sup
β∈R

∫ 0

−τ

∣∣e−λ(τ+s)
∣∣2 ds ≤ M2α < ∞,

sup
β∈R

∫ 0

−τ

∣∣eλs
∣∣2 ds ≤ M2α < ∞

and

sup
β∈R

∣∣∣∣
∫ 0

−τ

(
1 − e2αs

2α

)
ds

∣∣∣∣≤ M3α < ∞.

Hence, we have

sup
β∈R

‖x‖2
Cn

= sup
β∈R

∥∥∥∥Δ(λ)−1
[
y + B

∫ 0

−τ

e−λ(τ+s)g(s) ds

]∥∥∥∥
2

Cn

≤ 2
(

sup
β∈R

∥∥Δ(λ)−1
∥∥
)2
{
‖y‖2

Cn

+ ‖B‖2 sup
β∈R

∥∥∥∥
∫ 0

−τ

e−λ(τ+s)g(s) ds

∥∥∥∥
2

Cn

}

≤ 2
(

sup
β∈R

∥∥Δ(λ)−1
∥∥
)2

×
{
‖y‖2

Cn + ‖B‖2
(

sup
β∈R

∫ 0

−τ

∣∣e−λ(τ+s)
∣∣2 ds

)

×
(∫ 0

−τ

∥∥g(s)
∥∥2

Cn ds

)}

≤ 2M2
1α‖y‖2

Cn + 2M2
1αb2M2α

∫ 0

−τ

∥∥g(s)
∥∥2

Cn ds
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and

sup
β∈R

∫ 0

−τ

∥∥f (s)
∥∥2

Cn ds

= sup
β∈R

∫ 0

−τ

∥∥∥∥e
λsx +

∫ 0

s

eλ(s−r)g(r) dr

∥∥∥∥
2

Cn

ds

≤ 2 sup
β∈R

∫ 0

−τ

∥∥eλsx
∥∥2

Cn ds

+ 2 sup
β∈R

∫ 0

−τ

∥∥∥∥
∫ 0

s

eλ(s−r)g(r) dr

∥∥∥∥
2

Cn

ds

≤ 2‖x‖2
Cn sup

β∈R

∫ 0

−τ

∣∣eλs
∣∣2 ds

+ 2 sup
β∈R

∫ 0

−τ

(∫ 0

s

∣∣eλ(s−r)
∣∣2 dr

)

×
(∫ 0

s

∥∥g(r)
∥∥2

Cn dr

)
ds

≤ 2M2α‖x‖2
Cn + 2

∫ 0

−τ

∥∥g(s)
∥∥2

Cn ds

× sup
β∈R

∫ 0

−τ

(
1 − e2αs

2α

)
ds

≤ 2M2α‖x‖2
Cn + 2M3α

∫ 0

−τ

∥∥g(s)
∥∥2

Cn ds

≤ 4M2
1αM2α‖y‖2

Cn + (
4M2

1αb2M2
2α + 2M3α

)

×
∫ 0

−τ

∥∥g(s)
∥∥2

Cn ds,

where ‖B‖ = |c|+∑n
i=1 |bi,i+1| .= b. Therefore, there

is a positive constant Mα > 0 depending on α such that

sup
β∈R

‖X‖2
H = sup

β∈R

{
‖x‖2

Cn +
∫ 0

−τ

∥∥f (s)
∥∥2

Cn ds

}

≤ Mα

{
‖y‖2

Cn +
∫ 0

−τ

∥∥g(s)
∥∥2

Cn ds

}

= Mα‖Y‖2
H < ∞.

This yields

sup
β∈R

‖X‖H ≤√
Mα‖Y‖H < ∞,

so (4.1) holds. The proof is complete. �

5 Exponential stability and the effect of c on
stability

Now, we establish the exponential stability for the sys-
tem (2.7).

Theorem 4 Let A be given by (2.4) and (2.5) and let
the condition (3.3) be held. Then eAt generated by A
is exponentially stable, that is, there exist constants M

and ω > 0 such that

∥∥eAt
∥∥≤ Me−ωt .

Proof By the spectrum-determined growth condition
as established by Theorem 3, the verification of the ex-
ponential stability for eAt is determined by the spec-
tral distribution of A. From Theorem 2, for each λn ∈
σ(A), we have Reλn → −∞ as n → ∞. Hence, eAt

is exponentially stable if and only if

Reλ < 0, ∀λ ∈ σ(A).

This has been claimed from the first decision of Theo-
rem 2. The proof is complete. �

In what follows, we are going to establish the re-
lation between stability and the feedback gain c, i.e.,
we shall find the stability interval of c. Our analysis
will begin with the eigenvalues of B according to the
condition (3.3).

By a simple calculation, we conclude the character-
istic equation of B as follows:

dn − cγ dn−m − α = 0. (5.1)

Denote d = kμ, (5.1) can be written as

F(μ) = μn − cγ k−mμn−m − αk−n = 0. (5.2)

Furthermore, the condition (3.3) turns to

|μ| < 1, (5.3)

that is, the delay-independent stability condition equal
to that the roots of F(μ) = 0 lie inside the unit circle.

In order to verify the roots of polynomial F(μ) in-
side the unit circle, we shall apply Schur–Cohn crite-
rion (see, e.g., [5] on pp. 34–36 or Proposition 5.3 of
[7] on p. 27).
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Proposition 2 A necessary and sufficient condition
that the polynomial

F(μ) = anμ
n + an−1μ

n−1 + · · · + a1μ + a0, an > 0

with real coefficients has all of its roots inside the unit
circle is given by

F(1) > 0, (−1)nF (−1) > 0,

and the (n − 1) × (n − 1) Jury matrices

Δ±
n−1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

an 0 0 · · · 0

an−1 an 0 · · · 0

an−2 an−1 an · · · 0
...

...
...

. . .
...

a2 a3 a4 · · · an

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

±

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 a0

0 0 · · · a0 a1

...
...

. . .
...

...

0 a0 · · · am−4 am−3

a0 a1 · · · am−3 am−2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

are both positive innerwise, that is, the determinants of
all of the inners of Δ±

n−1 are positive. Here, the inners
of a square matrix are the matrix itself and all the ma-
trices obtained by omitting successively the first and
last rows and the first and last columns.

By using Proposition 2, we get the following nec-
essary condition on the stability interval of c.

Theorem 5 Suppose that all the roots of F(μ) lie in-
side the unit circle. Then

1 + (−1)m+1cγ k−m + (−1)n+1αk−n > 0 and

1 − cγ k−m − αk−n > 0.

More precisely, there are four cases:

Case 1: if n is an even number and m is an odd num-
ber, then
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

γ −1km(−1 + αk−n) < c < γ −1km(1 − αk−n)

if γ > 0,

γ −1km(1 − αk−n) < c < γ −1km(−1 + αk−n)

if γ < 0;

Case 2: if both n and m are even numbers, then
{

c < γ −1km(1 − αk−n) if γ > 0,

c > γ −1km(1 − αk−n) if γ < 0;
Case 3: if both n and m are odd numbers, then
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

γ −1km(−1 − αk−n) < c < γ −1km(1 − αk−n)

if γ > 0,

γ −1km(1 − αk−n) < c < γ −1km(−1 − αk−n)

if γ < 0;
Case 4: if n is an odd number and m is an even num-

ber, then
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

c < min{γ −1km(1 + αk−n), γ −1km(1 − αk−n)}
if γ > 0,

c > max{γ −1km(1 + αk−n), γ −1km(1 − αk−n)}
if γ < 0.

Proof By the Schur–Cohn criterion, we have

(−1)nF (−1) > 0, F (1) > 0.

Substitute this into (5.2), to get

1 + (−1)m+1cγ k−m + (−1)n+1αk−n > 0 (5.4)

and

1 − cγ k−m − αk−n > 0 (5.5)

which yields
{

c < γ −1km(1 − αk−n) if γ > 0,

c > γ −1km(1 − αk−n) if γ < 0.

Furthermore, when n is an even number and m is
an odd number, (5.4) becomes

1 + cγ k−m − αk−n > 0,

which yields Case 1 directly. Other three cases can be
obtained similarly and we omit their details here. �

Next, for given m and n, we present the sufficient
and necessary conditions of the stability on the short-
cut strength c. Denote

A±
n,m = γ −1km

(
1 ± αk−n

)
,

B±
n,m = ±γ −1km

(
1 − α2k−2n

)
.
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Theorem 6 (i) For n = 3,m = 2, all the roots of F(μ)

lie inside the unit circle if and only if

{
B−

3,2 < c < min{B+
3,2,A

−
3,2,A

+
3,2} if γ > 0,

max{B+
3,2,A

−
3,2,A

+
3,2} < c < B−

3,2 if γ < 0.

(ii) For n = 4,m = 2, all the roots of F(μ) lie in-
side the unit circle if and only if

1 ∓ αk−4 > 0 and |c| < |γ |−1k2(1 − αk−4).

(iii) For n = 4,m = 3, all the roots of F(μ) lie in-
side the unit circle if and only if

1 ∓ αk−4 > 0

and

|c| < |γ |−1k3 min
{
1 − αk−4,

(
1 − αk−4)(1 + αk−4) 1

2 ,

(
1 + αk−4)(1 − αk−4) 1

2
}
.

(iv) For n = 5,m = 2, all the roots of F(μ) lie in-
side the unit circle if and only if

1 − α2k−10 > 0

and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Λ1−√
Λ2

2γ 2α2k−14 < c < min
{
A−

5,2,A
+
5,2,

−Λ1+√
Λ2

2γ 2α2k−14

}

if γ > 0,

max
{
A−

5,2,A
+
5,2,

−Λ1−√
Λ2

2γ 2α2k−14

}

< c <
Λ1+√

Λ2
2γ 2α2k−14

if γ > 0,

where

Λ1 = γ k−2
(
1 − α2k−10

)
,

Λ2 = γ 2k−4
(
1 − α2k−10

)2(1 + 4α2k−10
)
.

(5.6)

(v) For n = 5,m = 3, all the roots of F(μ) lie in-
side the unit circle if and only if

1 − α2k−10 > 0,

and
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
{−A+

5,3,
Λ3−√

Λ4
2γ 2k−6

}
< c < min

{
A−

5,3,
−Λ3+√

Λ4
2γ 2k−6

}

if γ > 0, α > 0,

max
{−A+

5,3,
−Λ3−√

Λ4
2γ 2k−6

}
< c < min

{
A−

5,3,
Λ3+√

Λ4
2γ 2k−6

}

if γ > 0, α < 0,

max
{
A−

5,3,
−Λ3−√

Λ4
2γ 2k−6

}
< c < min

{−A+
5,3,

Λ3+√
Λ4

2γ 2k−6

}

if γ < 0, α > 0,

max
{
A−

5,3,
Λ3−√

Λ4
2γ 2k−6

}
< c < min

{−A+
5,3,

−Λ3+√
Λ4

2γ 2k−6

}

if γ < 0, α < 0,

where

Λ3 = γ αk−8
(
1 − α2k−10

)
,

Λ4 = γ 2k−6
(
1 − α2k−10

)2(
α2k−10 + 4c2

)
.

(5.7)

Proof (i) When n = 3,m = 2,F (μ) = μ3 −cγ k−2μ−
αk−3. By Theorem 5, we have
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

c < min{γ −1k2(1 − αk−3), γ −1k2(1 + αk−3)}
if γ > 0,

c > max{γ −1k2(1 − αk−3), γ −1k2(1 + αk−3)}
if γ < 0.

Noting that

Δ±
2 =

(
1 0

0 1

)
±
(

0 −αk−3

−αk−3 −cγ k−2

)

=
(

1 ∓αk−3

∓αk−3 1 ∓ cγ k−2

)
,

all the determinants of all inners are

det
(
Δ±

2

)= 1 ∓ cγ k−2 − α2k−6.

So, det(Δ±
2 ) > 0 yields

1 − cγ k−2 − α2k−6 > 0 and

1 + cγ k−2 − α2k−6 > 0,

which deduce
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

γ −1k2(−1 + α2k−6) < c < γ −1k2(1 − α2k−6)

if γ > 0,

γ −1k2(1 − α2k−6) < c < γ −1k2(−1 + α2k−6)

if γ < 0.
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Thus, by Proposition 2, all the roots of F(μ) lie inside
the unit circle if and only if

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ −1k2(−1 + α2k−6)

< c < min{γ −1k2(1 − α2k−6),

γ −1k2(1 − αk−3),

γ −1k2(1 + αk−3)}
if γ > 0,

max{γ −1k2(1 − αk−3), γ −1k2(1 + αk−3),

γ −1k2(1 − α2k−6)}
< c < γ −1k2(−1 + α2k−6)

if γ < 0.

This gives claim (i).
(ii) When n = 4,m = 2,F (μ) = μ4 − cγ k−2μ2 −

αk−4. By Theorem 5, we have

{
c < γ −1k2(1 − αk−4) if γ > 0,

c > γ −1k2(1 − αk−4) if γ < 0.

Noting that

Δ±
3 =

⎛

⎜⎝
1 0 0

0 1 0

−cγ k−2 0 1

⎞

⎟⎠

±
⎛

⎜⎝
0 0 −αk−4

0 −αk−4 0

−αk−4 0 −cγ k−2

⎞

⎟⎠

=
⎛

⎜⎝
1 0 ∓αk−4

0 1 ∓ αk−4 0

−cγ k−2 ∓ αk−4 0 1 ∓ cγ k−2

⎞

⎟⎠ ,

we have all the determinants of all inners as

det
(
Δ±

1

)= 1 ∓ αk−4,

det
(
Δ±

3

)= (
1 ∓ αk−4)[1 ∓ cγ k−2

− (∓αk−4)(−cγ k−2 ∓ αk−4)].

So, det(Δ±
1 ) > 0 and det(Δ±

3 ) > yield, respectively,

1 ∓ αk−4 > 0

and
{

1 − cγ k−2(1 + αk−4) − α2k−8 > 0,

1 + cγ k−2(1 + αk−4) − α2k−8 > 0.

Thus, by Proposition 2, all the roots of F(μ) lie inside
the unit circle if and only if

1 ∓ αk−4 > 0, |c| < |γ |−1k2(1 − αk−4).

Claim (ii) is then obtained.
(iii) When n = 4,m = 3,F (μ) = μ4 − cγ k−3μ −

αk−4. By Theorem 5, we have

|c| < |γ |−1k3(1 − αk−4).

Noting that

Δ±
3 =

⎛

⎜⎝
1 0 0

0 1 0

0 0 1

⎞

⎟⎠

±
⎛

⎜⎝
0 0 −αk−4

0 −αk−4 −cγ k−3

−αk−4 −cγ k−3 0

⎞

⎟⎠

=
⎛

⎜⎝

1 0 ∓αk−4

0 1 ∓ αk−4 ∓cγ k−3

∓αk−4 ∓cγ k−3 1

⎞

⎟⎠ ,

we have all the determinants of all inners as

det
(
Δ±

1

)= 1 ∓ αk−4,

det
(
Δ±

3

)= 1 ∓ αk−4 − c2γ 2k−6 − α2k−8(1 ∓ αk−4).

So, det(Δ±
1 ) > 0 and det(Δ±

3 ) > yield, respectively,

1 ∓ αk−4 > 0

and
{

c2γ 2k−6 < (1 − αk−4)(1 − α2k−8),

c2γ 2k−6 < (1 + αk−4)(1 − α2k−8).

Thus, by Proposition 2, all the roots of F(μ) lie inside
the unit circle if and only if 1 ∓ αk−4 > 0 and

|c| < |γ |−1k3 min
{(

1 − αk−4)(1 + αk−4) 1
2 ,

(
1 + αk−4)(1 − αk−4) 1

2
}
.

Claim (iii) is then proved.
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(iv) When n = 5,m = 2,F (μ) = μ5 − cγ k−2μ3 −
αk−5. By Theorem 5, we have

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

c < min{γ −1k2(1 − αk−5), γ −1k2(1 + αk−5)}
if γ > 0,

c > max{γ −1k2(1 − αk−5), γ −1k2(1 + αk−5)}
if γ < 0.

Noting that

Δ±
4 =

⎛

⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

−cγ k−2 0 1 0

0 −cγ k−2 0 1

⎞

⎟⎟⎟⎟⎠

±

⎛

⎜⎜⎜⎜⎝

0 0 0 −αk−5

0 0 −αk−5 0

0 −αk−5 0 0

−αk−5 0 0 −cγ k−2

⎞

⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎝

1 0 0 ∓αk−5

0 1 ∓αk−5 0

−cγ k−2 ∓αk−5 1 0

∓αk−5 −cγ k−2 0 1 ∓ cγ k−2

⎞

⎟⎟⎟⎟⎠
,

we have all the determinants of all inners as

det
(
Δ±

2

)= 1 − α2k−10,

det
(
Δ±

4

)= (
1 ∓ cγ k−2)(1 − α2k−10)

− α2k−10(1 + c2γ 2k−4 − α2k−10).

So, det(Δ±
2 ) > 0 and det(Δ±

4 ) > yield, respectively,

1 − α2k−10 > 0

and

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1 − α2k−10)2 − cγ k−2(1 − α2k−10)

− c2γ 2α2k−14 > 0,

(1 − α2k−10)2 + cγ k−2(1 − α2k−10)

− c2γ 2α2k−14 > 0.

Thus, by Proposition 2, all the roots of F(μ) lie inside
the unit circle if and only if 1 − α2k−10 > 0 and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Λ1−√
Λ2

2γ 2α2k−14 < c < min
{
A−

5,2,A
+
5,2,

−Λ1+√
Λ2

2γ 2α2k−14

}

if γ > 0,

max
{
A−

5,2,A
+
5,2,

−Λ1−√
Λ2

2γ 2α2k−14

}
< c <

Λ1+√
Λ2

2γ 2α2k−14

if γ > 0,

where Λ1 and Λ2 are given by (5.6). Claim (iv) is then
concluded.

(v) When n = 5,m = 3,F (μ) = μ5 − cγ k−3μ2 −
αk−5. By Theorem 5, we have

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−γ −1k3(1 + αk−5) < c < γ −1k3(1 − αk−5)

if γ > 0,

γ −1k3(1 − αk−5) < c < −γ −1k3(1 + αk−5)

if γ < 0.

Noting that

Δ±
4 =

⎛

⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

−cγ k−3 0 0 1

⎞

⎟⎟⎟⎟⎠

±

⎛

⎜⎜⎜⎜⎝

0 0 0 −αk−5

0 0 −αk−5 0

0 −αk−5 0 −cγ k−3

−αk−5 0 −cγ k−3 0

⎞

⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎝

1 0 0 ∓αk−5

0 1 ∓αk−5 0

0 ∓αk−5 1 ∓cγ k−3

−cγ k−3 ∓ αk−5 0 ∓cγ k−3 1

⎞

⎟⎟⎟⎠ ,

we have all the determinants of all inners as

det
(
Δ±

2

)= 1 − α2k−10,

det
(
Δ±

4

)= (
1 − α2k−10)2 − c2γ 2k−6

+ cγ k−3(∓αk−5)(1 − α2k−10).

So, det(Δ±
2 ) > 0 and det(Δ±

4 ) > yield, respectively,

1 − α2k−10 > 0
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and
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

c2γ 2k−6 + cγ αk−8(1 − α2k−10)

− (1 − α2k−10)2 < 0,

c2γ 2k−6 − cγ αk−8(1 − α2k−10)

− (1 − α2k−10)2 < 0.

(5.8)

After a tedious computation, it follows from (5.8) that
if γ > 0, α > 0 or γ < 0, α < 0,

Λ3 − √
Λ4

2γ 2k−6
< c <

−Λ3 + √
Λ4

2γ 2k−6

and if γ < 0, α > 0 or γ > 0, α < 0,

−Λ3 − √
Λ4

2γ 2k−6
< c <

Λ3 + √
Λ4

2γ 2k−6
,

where Λ3 and Λ4 are given by (5.7). Therefore, by
Proposition 2, Claim (v) is then followed. The proof is
complete. �

6 Numerical applications

In this section, we give two numerical simulations
results for delayed ring neural network systems and
demonstrate exactly the effect of c as a “switch” on
delay-independent stability of the system.

Example 1 Consider the delayed ring neural network
with four neurons described by the following:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = −5x1(t) + 3.5f (x2(t − τ)),

ẋ2(t) = −5x2(t) + 4f (x3(t − τ))

+ cf (x1(t − τ)),

ẋ3(t) = −5x3(t) + 3f (x4(t − τ)),

ẋ4(t) = −5x4(t) + 0.5f (x1(t − τ)),

(6.1)

where
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m = 2, n = 4, k = 5,

τ ≥ 0, f (u) = tanh(u),

γ = b12 = 3.5 > 0,

α = b12b23b34b41 = 21,

B =

⎛

⎜⎜⎜⎝

0 3.5 0 0

c 0 4 0

0 0 0 3

0.5 0 0 0

⎞

⎟⎟⎟⎠ .

(6.2)

Then

F(μ) = μ4 − 3.5

25
cμ2 − 21

625
.

By Claim (ii) of Theorem 6, all the roots of F(μ) lie
inside the unit circle if and only if

1 ∓ αk−4 > 0 and |c| < |γ |−1k2(1 − αk−4).

Noting that

1 ∓ αk−4 = 1 ∓ 21

625
> 0 and

|γ |−1k2(1 − αk−4)= 6.9,

system (6.1) is stable for any positive delay τ if and
only if |c| < 6.9. Therefore, the stability interval of c

for (6.1) is |c| < 6.9.
Let c = 1. Matrix B given by (6.2) has four eigen-

values as

d1 ≈ 2.6, d2 ≈ −2.6,

d3 ≈ 1.8i, d4 ≈ −1.8i

Figures 3, 4, and 5 demonstrate the convergence of the
state of system (6.1) for τ = 1, τ = 3, and τ = 10,

respectively.

Remark 1 From Example 1, it is found that if there is
no small-world connection for (6.1), that is c = 0, then
the system is always stable independent of time-delay
τ > 0.

Example 2 In Example 1, if we design a short-cut be-
tween the first and third neurons, that is b31 = c, and
have the same physical parameters, then system (6.1)
becomes
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = −5x1(t) + 3.5f (x2(t − τ)),

ẋ2(t) = −5x2(t) + 4f (x3(t − τ)),

ẋ3(t) = −5x3(t) + 3f (x4(t − τ))

+ cf (x1(t − τ)),

ẋ4(t) = −5x4(t) + 0.5f (x1(t − τ)).

(6.3)

By Claim (iii) of Theorem 6, we have that system
(6.3) is stable for any positive delay τ if and only if
|c| < 8.63.
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Fig. 3 The stability of the
state of (6.1) when
c = 1, τ = 1

Fig. 4 The stability of the
state of (6.1) when
c = 1, τ = 3

Fig. 5 The stability of the
state of (6.1) when
c = 1, τ = 10

Remark 2 From these two examples, it is found that a
small-world connection can affect stability of a sys-
tem to a large degree, and the suitable short-cut c

can be taken to make the system stable no matter
how much time-delay is chosen. Moreover, the delay-
independent stability interval of c depends continu-
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ously not only on the location of the short-cut but also
the values of parameters k and bi,i+1. On the other
hand, it is found that neural networks with small-world
connections are easier to be stabilized than their regu-
lar fully-connected counterparts.
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